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Proposition 0.1 (Exercise X.12.2). Let g(z) = z7 + 4z4 + z3 + 1. In the region |z| < 1, g
has four zeroes and in the region 1 < |z| < 2, f has three zeroes, counting multiplicity.

Proof. Let f(z) = z7. On the circle |z| = 2, we have

|f(z)− g(z)| = |4z4 + z3 + 1| ≤ |4z4|+ |z3|+ 1 = 4|z|4 + |z|3 + 1 = 73

|f(z)| = |2|7 = 128

In particular, |f(z) − g(z)| < |f(z)|, so the hypotheses of Rouche’s Theorem are satisfied,
and we conclude that f and g have the same number of zeroes in the interior |z| < 2. Since
we can see immediately that f has a zero of order 7 at zero and no others, this implies that
g has seven zeroes in |z| < 2. Now let h(z) = 4z4. On the circle |z| = 1, we have

|h(z)− g(z)| = |z7 + z3 + 1| ≤ |z7|+ |z3|+ 1 = |z|7 + |z|3 + 1 = 3

|h(z)| = 4|z|4 = 4

Again we can apply Rouche’s Theorem to conclude that g and h have the same number of
zeroes in |z| < 1. Since h has a zero of order four at zero and no other zeroes, g has four
zeroes in |z| < 1. Since g is degree seven, it has seven zeroes, counting multiplicity. Since
four of the zeroes lie in |z| < 1, and all seven lie in |z| < 2, the other three must be in
1 < |z| < 2.

Proposition 0.2 (Exercise X.12.3). For any ε > 0, the function g(z) = sin z + 1
z+i

has
infinitely many zeroes in the strip | Im z| < ε.

Proof. Let Kn = B(2πn, ε/2) be the closed ball of radius ε centered at 2πn, for n ∈ Z.
Note that Kn ⊂ {z : | Im z| < ε}. Define f(z) = sin z. Since f is 2π-periodic, we can
compute the values of f on the boundary of Kn by considering f on the circle centered at
zero. We may assume ε is small enough that the sets Kn are disjoint, so f does not vanish
on ∂Kn = { ε

2
eit : t ∈ [0, 2π] since the only zeroes of sin z are the centers of the Kn. Define

δ = min
t∈[0,2π]

{∣∣∣f ( ε
2
eit
)∣∣∣}
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We know δ exists since ∂Kn is compact, and δ > 0 since f does not vanish on ∂Kn. Also on
∂Kn, we have

|f(z)− g(z)| =
∣∣∣∣ 1

z + i

∣∣∣∣
This goes to zero as |z| → ∞, so we can choose N so that

|z| > N =⇒ 1

|z + i|
< δ

Then on ∂Kn we have

|f(z)− g(z)| = 1

|z + i|
< δ ≤ |f(z)|

Note that f, g are holomorphic away from −i, so we can apply Rouche’s Theorem to conclude
that f, g have the same number of zeroes on the interior of Kn for n ≥ N . Since f has one
zero on the interior of every Kn, g has a zero on the interior of Kn for n ≥ N . That is, g
has infinitely many zeroes in

⋃
n∈ZKn, which is a subset of | Im z| < ε.

Proposition 0.3 (Exercise X.12.7). Let 1 < a < ∞ and define g(z) = z + a − ez. Then g
has exactly one zero in the left half plane Re z < 0 and it is on the real axis.

Proof. Define f(z) = z + a. Let Kn be the rectangle with vertices ±nai,−2na ± nai for
n ∈ N with n > a. In the half plane Re z < 0, we have |ez| ≤ 1 (with equality only on the
imaginary axis). Thus on the boundary of Kn, we have

|f(z)− g(z)| = |ez| ≤ 1 |f(z)| = |z + a| ≥ a > 1

The second inquality holds for n ≥ a > 1, since then Kn contains the disk |z − (−a)| < a.
Thus we can apply Rouche’s Theorem, so f, g have the same number of zeroes in Kn. Clearly,
f has one zero at −a, so g has one zero in Kn. Since n was arbitrary, g has only one zero in
Re z < 0. Finally, note that

g(−a) = −e−a < 0 g(0) = a− 1 > 0

so by the intermediate value theorem, g has a zero in (−a, 0) so its single zero is real.

Proposition 0.4 (Exercise X.12.8). Let 0 < |a| < 1 and define g(z) = (z− 1)nez − a. Then
g has exactly n roots, each of multiplicity one, in the half plane Re z > 0. Furthermore, if
|a| ≤ 2−n, then the roots all lie in the disk |z − 1| < 1

2
.

Proof. Let f(z) = (z − 1)nez and for m ≥ 2 let Km be the right half of the disk of radius
m centered at zero. Then the closed disk of radius one centered at one is contained in Km.
Note that in the right half plane, |ez| ≥ 1, so on the boundary of Km, we have

|f(z)| = |z − 1|n|ez| ≥ |z − 1|n ≥ 1 > |a| = |f(z)− g(z)|

Thus by Rouche’s Theorem, f, g have the same number of zeroes in Km. Clearly f has a
zero of multiplicity n at z = 1 and no other zeroes (ez never vanishes). Thus g also has n
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zeroes, and since m was arbitrary, g has n zeroes in the right half plane. We claim these
zeroes all have multiplicity one. The derivative of g is

g′(z) = n(z − 1)nez + (z − 1)nez = (z − 1)n−1ez(z − (1− n))

The only zeroes of g′(z) occur at z = 1 and z = 1−n. Pluggin in 1, we know it is not a zero
of g, and 1 − n is not a zero of g in the right half plane. Since any zero of order 2 or more
would have derivative zero at that point, all of g’s zeroes in the right half plane have order
one. Now suppose |a| ≤ 2−n, and let K = {z : |z − 1| < 1/2}. Then on ∂K,

|f(z)− g(z)| = |a| ≤ 2−n ≤ 2−n|ez| = |f(z)|

so by Rouche’s Theorem, the n zeroes of g are in K, since f has n zeroes in K.

Proposition 0.5 (Exercise X.16.1). The following domains are all conformally equivalent
to the open unit disk. In each case, we construct an explicit univalent holomorphic map from
the open unit disk to the domain.

1. The upper half plane Im z > 0

2. The whole plane with a slit along (−∞, 0]

3. The strip 0 < Im z < 1

4. The first quadrant, Im z > 0,Re z > 0

5. The intersection of the unit disk with the upper half plane

6. The unit disk minus the segment [0, 1)

Proof. Throughout, we use the fact that a composition of univalent functions is univalent
(when the domain and image line up appropriately). (1) The map φ(z) = z−i

iz−1 satisfies

φ(i) = 0 φ(1) = −1 φ(−1) = 1 φ(0) = i

The first three say that φ maps the unit circle to the real axis. Since φ(0) = i, φ maps the
interior of the unit circle (the open unit disk) to the side of the real axis containing i (the
upper half plane). Since φ is a linear fractional transformation, it is univalent.

(2) Let φ be as above. We claim that the map ψ(z) = (−iφ(z))2 maps the open unit disk
to the plane with slit (−∞, 0]. As already noted, φ maps the open unit disk bijectively to
the upper half plane. Multiplying by −i rotates by an angle −π/2, so the upper half plane
becomes the right half plane. The map z 7→ z2 takes the right half plane, which we can write
as

{reiθ : r > 0, θ ∈ (−π/2, π/2)}

and doubles the angle and squares the modulus to send it to

{r2ei2θ : r > 0, θ ∈ (−π/2, π/2)} = {reiθ : r > 0, θ ∈ (−π, π)} = C \ {−∞, 0]
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which is precisely the slit plane we wanted. Note that z → z2 is univalent on the right half
plane, since everything has angle in (−π/2, π/2), so doubling the angle doesn’t introduce
any overlaps in the image.

(3) Let φ be as above. We claim that the map α(z) = 1
π

Log φ(z) maps the open unit
disk to the strip 0 < Im z < 1 univalently. As already noted, φ takes the open unit disk to
the upper half plane. This region is simply connected, so there is a branch of log φ, and we
just choose the principal branch. Note that

Log(reiθ) = ln |r|+ iθ

so applying Log to the region {reiθ : r > 0, θ ∈ (0, π)} gives the strip 0 < Im z < π, since
r 7→ ln |r| is onto all of R. Finally, the dilation z 7→ 1

π
z shrinks the strip 0 < Im z < π to the

strip 0 < Im z < 1. These maps are all univalent, so the composition is univalent.
(4) Let φ be as above. We claim that the map β(z) =

√
φ(z) maps the open unit disk

univalently to the first quadrant. We know that φ maps the open unit disk to the upper half
plane, which is simply connected, so there is a branch of

√
φ. Taking the principal branch,√

z takes the upper half plane and halves angles (and shrinks radii), so θ ∈ (0, π) gets shrunk
to θ ∈ (0, π/2). Thus

√
z takes the upper half plane to the first quadrant.

(5) Define the linear fractional transformation f(z) = −z−1
z−1 . It satisfies

f(1) =∞ f(−i) = −i f(i) = i f(−1) = 0 f(−1 + i) = −1

5
+ i

2

5
so f maps the real axis onto the real axis and the imaginary axis onto the unit circle. Thus
f maps each quadrant to one of four regions: the upper half of the unit disk, the lower half
of the unit disk, the upper half plane minus the unit disk, or the lower half plane minus the
unit disk. Since f(−1 + i) = −1

5
+ i2

5
, f maps the second quadrant to the upper half of the

unit disk.
Then define η(z) = f(iβ(z)), with β as above. We know that β maps the open unit disk

to the first quadrant. Multiplication by i rotates the first quadrant to the second quadrant,
and then η maps the second quadrant to the upper half of the unit disk. Thus η maps
the open unit disk to the upper half of the unit disk, and η is a composition of univalent
functions, so it is univalent.

(6) Let η be as above. Define χ(z) = η(z)2. We claim χ maps the open unit disk to the
open unit disk minus the slit [0, 1). The image of η is

{reiθ : 0 < r < 1, 0 < θ < π}
so after applying the square map, this region becomes

{r2e2iθ : 0 < r < 1, 0 < θ < π} = {reiθ : 0 < r < 1, 0 < θ < 2π}
which is precisely the open unit disk minus the segment [0, 1).

For the sake of concreteness, here are explicit formulas for φ, ψ, α, β, η, χ.

φ(z) =
z − 1

iz − 1
ψ(z) =

(
(−i) z − 1

iz − 1

)2

α(z) =
1

π
Log

(
z − 1

iz − 1

)

β(z) =

√
z − i
iz − 1

η(z) =
−i
√

z−i
iz−1 − 1

i
√

z−i
iz−1 − 1

χ(z) =

−i
√

z−i
iz−1 − 1

i
√

z−i
iz−1 − 1

2
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Proposition 0.6 (Exercise X.16.5). The Koebe function, defined by

f(z) =
z

(1− z)2

is univalent on the open unit disk. Its image is C \ (∞, 1
4
].

Proof. Let φ be the linear fractional transformation

φ(z) =
1 + z

1− z

Then φ(−1) = 0, φ(i) = i, and φ(−i) = −i, so φ maps the unit circle to the imaginary axis.
Also, φ(0) = 1, so φ maps the open unit disk to the right half plane Re z > 0. It is univalent
since all LFTs are univalent. Now note that

1

4
(φ(z))2 − 1

4
=

1

4

(
1 + z

1− z

)2

− 1

4
=

(1 + z)2 − (z − 1)2

4(z − 1)2

=
(1 + 2z + z2)− (1− 2z + z2)

4(z − 1)2
=

4z

4(z − 1)2
=

z

(1− z)2
= f(z)

So we have rewritten f as a composition of several simpler maps: φ, z 7→ z2, z 7→ 1
4
z, and

z 7→ z− 1
4
. First, as we already showed, φ maps the unit disk univalently onto the right half

plane. The map z 7→ z2 is univalent on the right half plane, since it doubles the argument.
Its image is the slit plane C \ (−∞, 0]. The map z 7→ 1

4
z is a simple dilation, which is a

bijection of the slit plane onto itself. Then the final map is a translation, which is univalent,
and maps the slit plane C \ (−∞, 0] to the shifted slit plane C \ (−∞, 1

4
]. A composition of

univalent functions is univalent, so f is univalent on the open unit disk.

Proposition 0.7 (Exercise X.19.3). Let G be a domain, and let

A =

{
f : G→ C holomorphic

∣∣∣∣ ∫∫
G

|f(x+ iy)|dx dy ≤ 1

}
Then A is a normal family.

Proof. We claim that A is locally uniformly bounded. If we can show this, then the Stieltjes-
Osgood Theorem says that it is a normal family. Let z0 ∈ G, and choose r > 0 so that
B(z0, r) ⊂ G. Let f ∈ A. Then f is holomorphic, so by the Mean Value Property (Exercise
VII.6.1 of Sarason),

f(z0) =
1

π(r/2)2

∫∫
|z−z0|<r/2

f(x+ iy)dx dy

Since f ∈ A, the integral on the RHS is bounded by 1. Thus

f(z0) ≤
4

πr2
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(Keep in mind that r depends on z0.) By continuity of f at z0, there exists δ > 0 such that

|z − z0| < δ =⇒ |f(z)− f(z0)| <
4

πr2

Now define r′ = min(δ, r). Then in B(z0, r
′), we have

|f(z)| ≤ 8

πr2

(for all z in the ball). This process gives us a rule to assign to each w ∈ G some rw > 0
so that in B(w, rw) we have the inequality |f(w)| ≤ 8

πr2w
. Let K ⊂ G be compact. We can

cover K by balls

K ⊂
⋃
w∈K

B(w, rw)

Since K is compact, there is a finite collection w1, . . . , wn so that

K ⊂
n⋃
i=1

B(wi, rwi
)

Now let r = min{rwi
}. Since all the rw > 0, we also have r > 0. Then on all of K, we have

|f(z)| ≤ 8

πr2

That is, 8
πr2

is a bound for all of A on K. Thus A is locally uniformly bounded, so by
the Stieljes-Osgood theorem it is a normal family. (Note: Sarason includes an additional
hypothesis that G is bounded, which this proof shows to be unnecessary. However, if G is
unbounded, then one can use the mean value property to show that A includes only the zero
function, so the result is trivial in that case regardless.)

Proposition 0.8 (Exercise X.19.4). Let (fn)∞n=1 be a locally uniformly bounded sequence of
holomorphic functions on a domain G. Suppose that fn converges pointwise on A ⊂ G where
A has a limit point in G. Then fn converges locally uniformly on G.

Proof. First, we claim that any two locally uniformly convergent subsequences of fn must
converge to the same limit. Suppose fnk

and fmk
are are locally uniformly convergent

subsequences of fn, with limits f, g respectively. By the Weierstrass convergence thoerem
(VIII.15 of Sarason), f and g are holomorphic. Since fn converges to f and g pointwise on
A, f, g agree on A. Then by the identity principle, f = g. This proves the claim.

Now we prove by contradiction that fn is locally uniformly Cauchy in G. Suppose it is
not locally uniformly Cauchy. Then there exists a compact set K ⊂ G and ε > 0 and z0 ∈ K
such that for every N ∈ N, there exist mN , kN > N so that

|fmN
(z0)− fkN (z0)| > ε

Then we can choose subsequences fmn and fkn of fn so that

|fmn(z0)− fkn(z0)| > ε ∀n ∈ N
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By the Stieljes-Osgood Theorem, there exist locally uniformly convergent subsequences of
fmn and fkn , which we denote by f `mn

and fpkn . By the previous claim, f `mn
and fpkn converge

to the same limit. But this contradicts the fact that they can’t converge pointwise to the
same value at z0, because there exists ε > 0 so that

|f `mn
(z0)− fpkn(z0)| > ε ∀`, p

Thus fn is locally uniformly Cauchy. We showed in class that being locally uinformly Cauchy
is equivalent to being locally uniformly convergent.
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